3,873 research outputs found

    Metrics Pilot Project for Military Avionics Sustainment: Experimental Design and Implementation Plan

    Get PDF
    This working paper outlines the design of an experiment, employing a pilot project, for identifying and validating new metrics for managing the US Air Force military avionics sustainment system. The paper also presents a plan for implementing the pilot project. The experimental design allows for the quantitifation of the effects of the new metrics, while controlling for the effects of other factors impacting the observed outcomes. Underlying the pilot project, and the proposed experimental design, are three main hypotheses derived from earlier research: (a) currently used metrics foster local optimization rather than system-wide optimization; (b) they do not allow measures of progress towards the achievement of system-wide goals and objectives, and, hence, do not allow visibility into the impact of depot maintenance on the warfighter; and (c) they are driving the “wrong behavior,” causing suboptimal decisions governing maintenance and repair priorities and practices and, as a result, undermining the efficiency and effectiveness of the sustainment system, despite the fact that the Air Force sustainment system has a dedicated and highly skilled workforce supporting the warfighter

    Constructing quantum games from symmetric non-factorizable joint probabilities

    Full text link
    We construct quantum games from a table of non-factorizable joint probabilities, coupled with a symmetry constraint, requiring symmetrical payoffs between the players. We give the general result for a Nash equilibrium and payoff relations for a game based on non-factorizable joint probabilities, which embeds the classical game. We study a quantum version of Prisoners' Dilemma, Stag Hunt, and the Chicken game constructed from a given table of non-factorizable joint probabilities to find new outcomes in these games. We show that this approach provides a general framework for both classical and quantum games without recourse to the formalism of quantum mechanics.Comment: 20 pages, no figure, accepted for publication in Physics Letters

    Logical Step-Indexed Logical Relations

    Full text link
    Appel and McAllester's "step-indexed" logical relations have proven to be a simple and effective technique for reasoning about programs in languages with semantically interesting types, such as general recursive types and general reference types. However, proofs using step-indexed models typically involve tedious, error-prone, and proof-obscuring step-index arithmetic, so it is important to develop clean, high-level, equational proof principles that avoid mention of step indices. In this paper, we show how to reason about binary step-indexed logical relations in an abstract and elegant way. Specifically, we define a logic LSLR, which is inspired by Plotkin and Abadi's logic for parametricity, but also supports recursively defined relations by means of the modal "later" operator from Appel, Melli\`es, Richards, and Vouillon's "very modal model" paper. We encode in LSLR a logical relation for reasoning relationally about programs in call-by-value System F extended with general recursive types. Using this logical relation, we derive a set of useful rules with which we can prove contextual equivalence and approximation results without counting steps

    Smoke gets in your eyes:what is sociological about cigarettes?

    Get PDF
    Contemporary public health approaches increasingly draw attention to the unequal social distribution of cigarette smoking. In contrast, critical accounts emphasize the importance of smokers’ situated agency, the relevance of embodiment and how public health measures against smoking potentially play upon and exacerbate social divisions and inequality. Nevertheless, if the social context of cigarettes is worthy of such attention, and sociology lays a distinct claim to understanding the social, we need to articulate a distinct, positive and systematic claim for smoking as an object of sociological enquiry. This article attempts to address this by situating smoking across three main dimensions of sociological thinking: history and social change; individual agency and experience; and social structures and power. It locates the emergence and development of cigarettes in everyday life within the project of modernity of the nineteenth and twentieth centuries. It goes on to assess the habituated, temporal and experiential aspects of individual smoking practices in everyday lifeworlds. Finally, it argues that smoking, while distributed in important ways by social class, also works relationally to render and inscribe it

    No More Active Galactic Nuclei in Clumpy Disks Than in Smooth Galaxies at z~2 in CANDELS / 3D-HST

    Get PDF
    We use CANDELS imaging, 3D-HST spectroscopy, and Chandra X-ray data to investigate if active galactic nuclei (AGNs) are preferentially fueled by violent disk instabilities funneling gas into galaxy centers at 1.3<z<2.4. We select galaxies undergoing gravitational instabilities using the number of clumps and degree of patchiness as proxies. The CANDELS visual classification system is used to identify 44 clumpy disk galaxies, along with mass-matched comparison samples of smooth and intermediate morphology galaxies. We note that, despite being being mass-matched and having similar star formation rates, the smoother galaxies tend to be smaller disks with more prominent bulges compared to the clumpy galaxies. The lack of smooth extended disks is probably a general feature of the z~2 galaxy population, and means we cannot directly compare with the clumpy and smooth extended disks observed at lower redshift. We find that z~2 clumpy galaxies have slightly enhanced AGN fractions selected by integrated line ratios (in the mass-excitation method), but the spatially resolved line ratios indicate this is likely due to extended phenomena rather than nuclear AGNs. Meanwhile the X-ray data show that clumpy, smooth, and intermediate galaxies have nearly indistinguishable AGN fractions derived from both individual detections and stacked non-detections. The data demonstrate that AGN fueling modes at z~1.85 - whether violent disk instabilities or secular processes - are as efficient in smooth galaxies as they are in clumpy galaxies.Comment: ApJ accepted. 17 pages, 17 figure

    Direct Imaging in Reflected Light: Characterization of Older, Temperate Exoplanets With 30-m Telescopes

    Get PDF
    Direct detection, also known as direct imaging, is a method for discovering and characterizing the atmospheres of planets at intermediate and wide separations. It is the only means of obtaining spectra of non-transiting exoplanets. Characterizing the atmospheres of planets in the <5 AU regime, where RV surveys have revealed an abundance of other worlds, requires a 30-m-class aperture in combination with an advanced adaptive optics system, coronagraph, and suite of spectrometers and imagers - this concept underlies planned instruments for both TMT (the Planetary Systems Imager, or PSI) and the GMT (GMagAO-X). These instruments could provide astrometry, photometry, and spectroscopy of an unprecedented sample of rocky planets, ice giants, and gas giants. For the first time habitable zone exoplanets will become accessible to direct imaging, and these instruments have the potential to detect and characterize the innermost regions of nearby M-dwarf planetary systems in reflected light. High-resolution spectroscopy will not only illuminate the physics and chemistry of exo-atmospheres, but may also probe rocky, temperate worlds for signs of life in the form of atmospheric biomarkers (combinations of water, oxygen and other molecular species). By completing the census of non-transiting worlds at a range of separations from their host stars, these instruments will provide the final pieces to the puzzle of planetary demographics. This whitepaper explores the science goals of direct imaging on 30-m telescopes and the technology development needed to achieve them.Comment: (March 2018) Submitted to the Exoplanet Science Strategy committee of the NA

    Nonlinear interfacial waves in a constant-vorticity planar flow over variable depth

    Full text link
    Exact Lagrangian in compact form is derived for planar internal waves in a two-fluid system with a relatively small density jump (the Boussinesq limit taking place in real oceanic conditions), in the presence of a background shear current of constant vorticity, and over arbitrary bottom profile. Long-wave asymptotic approximations of higher orders are derived from the exact Hamiltonian functional in a remarkably simple way, for two different parametrizations of the interface shape.Comment: revtex, 4.5 pages, minor corrections, summary added, accepted to JETP Letter

    Quantum version of the Monty Hall problem

    Get PDF
    ©2002 The American Physical SocietyA version of the Monty Hall problem is presented where the players are permitted to select quantum strategies. If the initial state involves no entanglement the Nash equilibrium in the quantum game offers the players nothing more than that obtained with a classical mixed strategy. However, if the initial state involves entanglement of the qutrits of the two players, it is advantageous for one player to have access to a quantum strategy while the other does not. Where both players have access to quantum strategies there is no Nash equilibrium in pure strategies, however, there is a Nash equilibrium in quantum mixed strategies that gives the same average payoff as the classical game.A. P. Flitney and D. Abbot

    The lack of star formation gradients in galaxy groups up to z~1.6

    Get PDF
    In the local Universe, galaxy properties show a strong dependence on environment. In cluster cores, early type galaxies dominate, whereas star-forming galaxies are more and more common in the outskirts. At higher redshifts and in somewhat less dense environments (e.g. galaxy groups), the situation is less clear. One open issue is that of whether and how the star formation rate (SFR) of galaxies in groups depends on the distance from the centre of mass. To shed light on this topic, we have built a sample of X-ray selected galaxy groups at 0<z<1.6 in various blank fields (ECDFS, COSMOS, GOODS). We use a sample of spectroscopically confirmed group members with stellar mass M >10^10.3 M_sun in order to have a high spectroscopic completeness. As we use only spectroscopic redshifts, our results are not affected by uncertainties due to projection effects. We use several SFR indicators to link the star formation (SF) activity to the galaxy environment. Taking advantage of the extremely deep mid-infrared Spitzer MIPS and far-infrared Herschel PACS observations, we have an accurate, broad-band measure of the SFR for the bulk of the star-forming galaxies. We use multi-wavelength SED fitting techniques to estimate the stellar masses of all objects and the SFR of the MIPS and PACS undetected galaxies. We analyse the dependence of the SF activity, stellar mass and specific SFR on the group-centric distance, up to z~1.6, for the first time. We do not find any correlation between the mean SFR and group-centric distance at any redshift. We do not observe any strong mass segregation either, in agreement with predictions from simulations. Our results suggest that either groups have a much smaller spread in accretion times with respect to the clusters and that the relaxation time is longer than the group crossing time.Comment: Accepted for publication in MNRA
    • …
    corecore